Research Article

The synthesis and characterisation of multi-labelled [D, ¹³C] 2-deuterio-2-methyl aromatic ketones

Gregory S. Coumbarides, Jason Eames* and Neluka Weerasooriya Department of Chemistry, Queen Mary, University of London, London El 4NS, UK

Summary

A series of multi-labelled aromatic ketones were efficiently synthesized using a deprotonation–deuteriation/alkylation strategy. The yields were high and the products are synthetically useful. Copyright © 2003 John Wiley & Sons, Ltd.

Key Words: chelating deuterium donor; deprotonation-deuteriation strategy; kinetic deuteriation; ketones; lithium amide bases and isotopic labels

Introduction

The development of new synthetic methods and the extension of existing methodology for the incorporation of non-radioactive isotopic labels is becoming an increasingly important area.¹ In many cases, the incorporation of a deuterium atom or a carbon-13 containing substituent has relied on simple carbon-hydrogen bond exchange reactions.² These exchange processes have been shown to occur readily

Contract/grant sponsor: The London University, Central Reasearch Fund Contract/grant sponsor: The Nuffied Foundation (NUF-NAF 99) Contract/grant sponsor: Royal Society and Goss Scientific Instruments

Copyright © 2003 John Wiley & Sons, Ltd.

Received 11 November 2002 Revised 26 November 2002 Accepted 28 November 2002

^{*}Correspondence to: J. Eames, Department of Chemistry, Queen Mary, University of London, London El 4NS, UK. E-mail: j.eames@qmul.ac.uk Contract/grant sponsor: Queen Mary, University of London

at relatively acidic positions,³ most notably those adjacent to a carbonyl group.⁴ Many of these transformations are generally performed under thermodynamic control⁵ to improve the level of isotopic incorporation.⁶ However, there are problems associated with this approach, such as product separation due to incomplete substitution or in some cases over-incorporation,⁷ whereas, isotopic incorporation under kinetic control⁸ has the potential to solve many of these non-selective incorporations. We have recently reported an efficient and reliable method for the regioselective C-deuteriation of enolates under 'basefree' conditions (Scheme 1).⁹ Treatment of the silvl enol ether, e.g. 3 (derived from the 2-methyltetralone 2 in 76% yield) with MeLi, followed by the addition of a suitable deuterium donor, such as acetic acid- d_4 , gave the isotopically labelled 2-deuterio-2-methyltetralone 2- d_1 with near complete *D*-incorporation ([D]:[H] = 95:5; 68%). This deuteriation step must proceed via the complementary 'base-free' enolate since the level of *D*-incorporation was found to be significantly lower due to *initial proton return*¹⁰ when using traditional 'base' enolates.9

We originally chose this aromatic ketone framework due to its UV activity, non-volatile nature and predictable enolate chemistry.⁹ This predictability is particularly important, in that it allows further incorporation to occur on the same α -carbon atom. We now report an extension of this methodology in the synthesis of multi-labelled 2-deuterio-2-methyl-aromatic ketones containing combinations of deuter-ium and carbon-13 isotopic labelled substituents.

We chose to synthesise these multi-labelled $[D, {}^{13}C]$ ketones using isotopically labelled 2-methyl ketones **5a-b**, **8a-c** and **12a-b** which

Scheme 1. Synthesis of 2-methyltetralone 2-d1.

Copyright © 2003 John Wiley & Sons, Ltd.

J Label Compd Radiopharm 2003; 46: 515-530

Scheme 2.

contain an isotopically labelled methyl group (e.g. CD_3 , ¹³CH₃ and ¹³CD₃) (Scheme 2 and Table 1). We assumed that incorporation of these different methyl labelled substituents could be efficiently achieved by deprotonation of the parent ketone, tetralone 1, indanone 4 and benzosuberone 11 (using LDA) and methylation of the corresponding enolate with appropriately labelled methyl iodide; CD_3I , ¹³CH₃I and ¹³CD₃I. This strategy is ideal since quantitative incorporation must occur through carbon-carbon bond formation. The required 2-methyl aromatic ketones **5a-b**, **8a-c** and **12a-b** were synthesized in good yield by methylation of the enolate [derived from indanone 4, tetralone 1, benzosuberone 11 and LDA] with the corresponding isotopically labelled methyl iodide (CD₃I, ¹³CH₃I and ¹³CD₃I). These ketones were efficiently converted into the corresponding silyl enol ethers **6a-b**, **9a-c** and **13a-b** by the sequential addition of LDA and Me₃SiCl.

Deuteriation of these silyl enol ethers **6a-b**, **9a-c** and **13a-b** were achieved using our standard procedure,⁹ by initially converting them into their corresponding 'base-free' enolates, by the direct addition of MeLi using Stork's methodology.¹¹ Simple addition of acetic acid- d_4 (**2** equivalents) to a stirred solution of each enolate in THF at -78° C gave the multi-labelled aromatic ketones **7a-b**, **10a-c** and **14a-b** in excellent yields (Table 1) with near complete *D*-incorporation (determined by ¹H NMR).[†]

In conclusion, we report an efficient route to the selective isotopic exchange of C-H bonds adjacent to a carbonyl motif. For those cases, which involved the substituent combination $[D, CD_3]$ and $[D, {}^{13}CD_3]$ this resulted in the removal of their associated signals in the ¹H NMR spectra relative to the non-isotopic variant. Those involving a

[†] Determined by integration of the ¹H NMR spectrum of the corresponding methyl doublet versus the methyl singlet (for the ¹³CH₃ labelled derivatives) and by the disappearance of the adjacent C(2) proton.

Entry	Ketone $\frac{1}{2}$	LDA Methyl 1. LDA "CH ₃ "l ketone 2. (CH ₃)	Silyl enol 1. C silyl enol 2. C	H ₃ Li D ₃ CO ₂ D Labelled ketone
1		CD3	OSi(CH ₃) ₃	CD3
2	4	5a; 67%	6a; 78%	7a; ([D]:[H]) = 83:17; 71%
	4	5b ; 57%	6b ; 72%	7b; ([D]:[H]) = 85:15; 72%
3		CD ₃	OSi(CH ₃) ₃ CD ₃	
	1	8a ; 58%	9a ; 78%	10a ; ([D]:[H]) = 95:5; 61%
4		13CH3	OSi(CH ₃) ₃	P I ¹³ CH ₃
	1	8b ; 48%	9b ; 89%	10b ; ([D]:[H]) = 98:2; 72%
5		13CD3	OSi(CH ₃) ₃ ¹³ CD ₃	D I ¹³ CD ₃
	1	8c; 57%	9c ; 88%	10c ; ([D]:[H]) = 79:21; 82%
6		CD3	(H ₃ C) ₃ SiO CD ₃	CD3
	11	12a ; 56%	13a ; 76%	14a ; ([D]:[H]) = 95:5; 73%
7		13CH3	(H ₃ C) ₃ SiO ¹³ CH ₃	P J ³ CH ₃
	11	12b ; 61%	13b ; 81%	14b ; ([D]:[H]) = 95:5;77%

Table 1. The synthesis of multi-labelled ketones 7a-b, 10a-c and 14a-b

[D, ¹³CH₃] gave a characteristic combination of doublet $({}^{1}J_{C,H} = 127.4 \text{ Hz})$ for the methyl group in the ${}^{1}H$ NMR spectra. The synthesis of related multi-labelled 2,2-[D, ${}^{13}C$] ketones using a deprotonation strategy under thermodynamic control has previously been reported.^{‡,12,13} Virtually all these reports deal with the synthesis of fully deuteriated carbonyl derivatives,¹² whereas reports into the

[‡]For methods involving 2,2-[D, CD₃] incorporation, see ref. 12.

Copyright © 2003 John Wiley & Sons, Ltd. J Label Compd Radiopharm 2003; 46: 515–530

synthesis of selective 2,2-[D, ¹³C] labelled ketones are much rarer.^{§,13} However, there are some reports into the synthesis of related ketones using a different carbon-carbon bond forming strategy.^{¶, ||,14}

Experimental

All solvents were distilled before use. Tetrahydrofuran (THF) and ether were freshly distilled from LiAlH₄. Triphenylmethane was used as the indicator for THF. All reactions were carried out under nitrogen using oven-dried glassware. Flash column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh). Thin layer chromatography (TLC) was carried out on commercially available pre-coated plates (Merck Kieselgel 60F₂₅₄ silica). Proton and carbon NMR spectra were recorded on a JEOL EX 270 and Bruker AM 250, AMX 400 and AM 600 Fourier transform spectrometer (using an internal deuterium lock). Chemical shifts are quoted in parts per million downfield from tetramethylsilane. Carbon NMR spectra were recorded with broad proton decoupling. Infrared spectra were recorded on a Shimadzu 8300 FTIR instrument and mass spectra were recorded on a Kratos 50MSTC instrument using a DS503 data system for highresolution analysis.

2-Trideuteriomethylindanone $5a-d_3$

Indanone 4 (0.24 g, 1.5 mmol) was slowly added dropwise to a stirred solution of LDA (2.0 ml, 1.5 M in THF, 3.0 mmol) in THF (20 ml) at - 78° C and stirred for a further 20 min. Methyl iodide- d_3 (0.43 g, 0.2 ml, 3.0 mmol) was added and the resulting solution was stirred for 12h. A solution of NH₄Cl (saturated, 10 ml) was then added and the mixture was extracted with ether (3 \times 50 ml). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum (b.p. 40-60°C)-ether (19:1) to give 2-trideuteriomethylindanone 5a-d₃ (0.33 g, 67%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.2; v_{max} (film)/cm⁻¹ 2136 (CD) and 1735 (CO); δ_{H}

 [§] For related methods involving 2,2-[D, ¹³CD] incorporation, see ref. 13.
[¶] For methods involving 2,2-[D, ¹³C] incorporation, see ref. 14.
[∥] For related methods involving 2,2-[D, ¹³CD] incorporation, see ref. 15.

(270 MHz, CDCl₃) 7.75 (1 H, d, ${}^{3}J_{H,H} = 7.5$, CH; Ar), 7.58 (1 H, t, ${}^{3}J_{H,H} = 7.5$, CH; Ar), 7.44 (1 H, d, ${}^{3}J_{H,H} = 7.5$, CH; Ar), 7.36 (1 H, t, ${}^{3}J_{H,H} = 7.5$, CH; Ar), 7.36 (1 H, t, ${}^{3}J_{H,H} = 7.5$, CH; Ar), 3.39 (1 H, dd, ${}^{3}J_{H,H} = 17.9$ and 8.7, $CH_{A}H_{B}$) and 2.70 (2 H, m, CH_AH_B and CHCD₃); δ_{C} (67.5 MHz, CDCl₃) 210.4, 154.2, 137.0, 135.3, 128.1, 127.2, 124.7, 42.5, 35.6 and 15.5 (1 C, triplet [6:7:6], ${}^{1}J_{C,D} = 9.8$, CD₃) (Found M⁺, 149.0912. C₁₀H₇D₃ requires M, 149.0920). The intensity of the CD₃ signal in the 13 C NMR spectrum was particularly weak due to the long T₁ relaxation time associated with this substituent.¹⁶

2-Methyl-[¹³C]-indanone **5b**

In the same way as 2-methylindanone **5a**, indanone **4** (0.49 g, 3.75 mmol), LDA (2.5 ml, 1.5 M in THF, 3.75 mmol) and methyl-[¹³C]-iodide (0.53 g, 0.2 ml, 3.75 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (9:1), 2*methyl-[*¹³C]-*indanone* **5b** (0.31 g, 57%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.2; $v_{\rm max}$ (film)/cm⁻¹ 1731 (CO); $\delta_{\rm H}$ (270 MHz, CDCl₃) 7.76 (1 H, d, ³ $J_{\rm H,\rm H}$ =7.5, CH; Ar), 7.62 (1 H, t, ³ $J_{\rm H,\rm H}$ =7.5, CH; Ar), 7.46 (1 H, d, ³ $J_{\rm H,\rm H}$ =7.5, CH, Ar), 7.35 (1 H, t, ³ $J_{\rm H,\rm H}$ =7.5, CH; Ar), 3.40 (1 H, dd, ³ $J_{\rm H,\rm H}$ =17.7 and 8.7; C $H_{\rm A}$ H_B), 2.79-2.63 (2 H, m, CH_A $H_{\rm B}$ and CH¹³CH₃) and 1.32 (3 H, dd, ¹ $J_{\rm C,\rm H}$ =128.2 and ³ $J_{\rm H,\rm H}$ =7.3, ¹³CH₃); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 209.6, 153.5, 134.7, 134.6, 127.3, 126.6, 124.0, 41.9 (1 C, doublet [1:1], ¹ $J_{\rm C,\rm C}$ =31.2, C¹³CH₃), 32.6 and 16.7 (¹³CH₃) (Found M⁺, 147.0760. C³₁₃CH₁₀O requires M, 147.0765).

2-Trimethylsilyoxy-2-trideuteriomethylindan-1-ene 6-d3

2-Trideuteriomethylindanone **5a** (0.3 g, 2.02 mmol) was slowly added dropwise to a stirred solution of LDA (2.0 ml, 1.5 M in THF, 2.02 mmol) in THF (10 ml) at -78° C and stirred for 20 min. Me₃SiCl (0.24 g, 0.28 ml, 2.22 mmol) was added and this solution was stirred for 3 hours. A solution of NH₄Cl (10 ml) was added and the mixture was extracted with ether (3 × 50 ml). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum (b.p. 40–60°C)-ether (19:1) to give the *1-trimethylsiloxy-2-trideuteriomethylindan-1-ene* **6a**-*d*₃ (0.27 g, 78%) as a colourless oil; *R*_F [light petroleum (40–60°C): ether (9:1)] 0.75; v_{max} (film)/cm⁻¹ 2125 (CD) and 1634 (C=C); $\delta_{\rm H}$ (270 MHz, CDCl₃) 7.32-7.09 (4 H, m, 4 × CH;

Ar), 3.18 (2 H, s, CH₂) and 0.26 (9 H, s, Me₃Si); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 142.8, 140.9, 128.3, 125.9, 124.0, 123.1, 119.9, 117.2, 38.4 and 0.73 (Found MH⁺, 221.1232. C₁₃H₁₅D₃OSi requires M, 221.1237). The absence of the septet [1:3:6:7:6:3:1] around 15 ppm for the CD₃ substituent in the ¹³C NMR spectrum is common due to the long T_1 relaxation time associated with this substituent.¹⁶

1-Trimethylsilyoxy-2-methyl-[¹³C]-indan-1-ene 6b

In the same way as silvl enol ether **5a**, 2-methyl-[¹³C]-indanone **5b** (0.10 g, 0.68 mmol), LDA (0.5 ml, 1.5 M in THF, 0.68 mmol) and Me₃SiCl (80 mg, 93 µl, 0.74 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (9:1), the *1-trimethylsilyoxy-2-methyl-[*¹³C]-indan-1-ene **6b** (0.11 g, 72%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.75; $v_{\rm max}$ (film)/cm⁻¹ 1625 (C=C); $\delta_{\rm H}$ (270 MHz, CDCl₃) 7.32-7.01 (4 H, m, 4 × CH; Ar), 3.18 (2 H, s, CH₂), 1.97 (3 H, d, ¹ $J_{\rm C,H}$ =126.1, ¹³CH₃) and 0.26 (9 H, s, Me₃Si); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 142.4, 140.9, 126.2, 124.0, 123.8, 117.3, 38.4, 12.4 (¹³CH₃) and 0.77 (Found M⁺, 219.1152. Cl₁₂¹³CH₁₈OSi requires M, 219.1160).

2-Deuterio-2-trideuteriomethylindanone 7a-d4

A solution of MeLi (0.3 ml, 1.6 M in ether, 0.45 mmol) was added dropwise to the silvl enol ether 6a (0.10g, 0.45 mmol) at room temperature. This resulting solution was stirred for 1 hour at room temperature and then cooled to -78° C. Acetic acid- d_4 (57 mg, 51 µl, 0.90 mmol) in THF (1 ml) was added dropwise to this solution and the resulting solution stirred for a further 30 minutes. The reaction was quenched by the addition of water (10 ml). The solution was extracted with ether $(3 \times 20 \text{ ml})$, dried (MgSO₄) and evaporated under vacuum. The residue was purified by flash chromatography on silica gel eluting with light petroleum (40-60°C):ether (9:1) to give the 2-deuterio-2trideuteriomethylindanone 7a-d₄ (48 mg, 71%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.2; v_{max} (film)/cm⁻¹ 2072 (CD) and 1715 (CO); $\delta_{\rm H}$ (270 MHz, CDCl₃) 7.76 (1 H, d, ${}^{3}J_{\rm H,H} = 7.6$, CH; Ar), 7.58 (1 H, t, ${}^{3}J_{H,H} = 7.6$, CH; Ar), 7.44 (1 H, d, ${}^{3}J_{H,H} = 7.6$, CH; Ar), 7.36 (1 H, t, ${}^{3}J_{H,H} = 7.6$, CH; Ar), 3.40 (1 H, AB quartet, ${}^{3}J_{H,H} = 17.2$, CH_AH_B) and 2.85 (1 H, AB quartet, ${}^{3}J_{H,H} = 17.2$, CH_AH_B); δ_C (67.5 MHz, CDCl₃) 209.5, 153.5, 136.4, 134.6, 127.3, 126.5, 123.9,

41.5 (1 H, triplet [1:1:1], ${}^{1}J_{C,D}$ = 19.7, *C*DCH₃) and 34.2 (Found M⁺, 150.0789. C₁₀H₆D₄O requires M, 150.0793). The negative isotopic shift was 0.42 ppm (42.6 Hz at 100.6 MHz).

2-Deuterio-2-methyl-[¹³C]-indanone **7b**-d₁

In the same way as 2-trideuteriomethylindanone **7a**-*d*₄, silyl enol ether **6b** (0.10 g, 0.54 mmol), MeLi (0.34 ml, 1.6 M in ether, 0.54 mmol) and acetic acid-*d*₄ (69 mg, 61 µl, 1.08 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (9:1), 2*deuterio-2-methyl-[*¹³C*]-indanone* **7b**-*d*₁ (58 mg, 72%) as an oil; *R*_F [light petroleum (40–60°C): ether (9:1)] 0.2; *v*_{max} (film)/cm⁻¹ 2072 (CD) and 1715 (CO); $\delta_{\rm H}$ (270 MHz, CDCl₃) 7.76 (1 H, d, ³*J*_{H,H}=7.5, CH; Ar), 7.62 (1 H, t, ³*J*_{H,H}=7.5, CH; Ar), 7.46 (1 H, d, ³*J*_{H,H}=7.5, CH; Ar), 7.39 (1 H, t, ³*J*_{H,H}=7.5, CH; Ar), 3.45 (1 H, AB quartet, ³*J*_{H,H}=17.0, *CH*_AH_B), 2.85 (1 H, AB quartet, ³*J*_{H,H}=17.0, CH_A*H*_B) and 1.33 (3 H, d, ¹*J*_{C,H}=128.1, ¹³CH₃); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 209.4, 154.0, 137.2, 135.2, 128.4, 127.1, 124.8 and 41.7 (1 C, m, *C*DCO) (Found MH⁺, 149.0914. C¹³₉CH₁₀DO requires M, 149.0906). The negative isotopic shift could not be determined due to the multiplicity of the ¹³C NMR signal at 41.7 ppm.

2-Trideuteriomethyltetralone 8a-d3

In the same way as 2-methylindanone **5a**, tetralone **1** (0.99 g, 6.8 mmol), LDA (4.5 ml, 1.5 M in THF, 6.8 mmol) and methyl iodide– d_3 (0.98 g, 0.42 µl. 6.8 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether-ether (19:1), the 2-trideuteriomethyltetralone 8a-d₃ (0.64 g, 58%) as an oil; $R_{\rm F}$ [light petroleum (40– 60°C):ether (9:1)] 0.5; v_{max} (film)/cm⁻¹ 2061 (CD) and 1681 (CO); $\delta_{\rm H}$ $(250 \text{ MHz}, \text{ CDCl}_3) 8.05 (1 \text{ H}, \text{ d}, {}^{3}J_{\text{H,H}} = 7.7, \text{ CH}; \text{ Ar}), 7.45 (1 \text{ H}, \text{ t}, \text{ t})$ ${}^{3}J_{\text{H,H}} = 7.7$, CH; Ar), 7.31 (1 H, d, ${}^{3}J_{\text{H,H}} = 7.7$, CH; Ar), 7.22 (1 H, d, ${}^{3}J_{\text{H,H}} = 7.7$, CH; Ar), 3.10-2.93 (2 H, m, CH₂), 2.62-2.54 (1 H, dd, ${}^{3}J_{H,H} = 11.9$ and 4.4, CD₃CH), 2.25-2.15 (1 H, m, CH_ACH_B) and 1.96-1.80 (1 H, m, CH_ACH_B); δ_C (100.6 MHz, CDCl₃) 200.7, 144.2, 133.0, 132.4, 128.7, 127.4, 126.5, 42.4, 31.3 and 28.8 (Found M⁺, 163.1083. $C_{11}H_9D_3O$ requires M, 163.1076); m/z 164 (100%, M + H) and 163 (60, M). The absence of the septet [1:3:6:7:6:3:1] around 15 ppm for the CD₃ substituent in the ¹³C NMR spectrum is common due to the long T_1 relaxation time associated with this substituent.¹⁶

2-Methyl-[¹³C]-tetralone 8b

In the same way as 2-methylindanone **5a**, tetralone **1** (0.9 g, 6.2 mmol), LDA (4.1 ml, 1.5 M in THF, 6.2 mmol) and methyl-[¹³C]-iodide (0.88 g, 0.38 ml, 6.2 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (19:1), *2-methyl-[*¹³C]-tetralone **8b** (0.48 g, 48%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C):ether (9:1)] 0.5; $v_{\rm max}$ (film)/cm⁻¹ 1682 (CO); $\delta_{\rm H}$ (250 MHz, CDCl₃) 8.05 (1 H, d, ${}^{3}J_{\rm H,\rm H}$ = 7.7 CH; Ar), 7.46 (1 H, t, ${}^{3}J_{\rm H,\rm H}$ = 7.7, CH; Ar), 7.21 (1 H, d, ${}^{3}J_{\rm H,\rm H}$ = 7.7, CH; Ar), 7.23 (1 H, d, ${}^{3}J_{\rm H,\rm H}$ = 7.7, CH; Ar), 3.12-2.93 (2 H, m, CH₂), 2.69-2.51 (1 H, m, ${}^{13}{\rm CH}_{3}{\rm CH}$), 2.26-2.14 (1 H, m, CH_ACH_B), 1.97-1.80 (1 H, m, CH_ACH_B) and 1.30 (3 H, dd, ${}^{1}J_{\rm C,\rm H}$ = 127.4 and ${}^{3}J_{\rm H,\rm H}$ = 6.8, ${}^{13}{\rm CH}_{3}$); $\delta_{\rm C}$ (62.5 MHz, CDCl₃) 202.9, 133.3, 131.8, 128.6, 127.9, 126.2, 125.2, 42.0 (1 C, triplet [1:1:1], ${}^{1}J_{\rm C,\rm C}$ = 36.2, $C^{13}{\rm CH}_{3}$), 31.2, 28.7 and 16.5 (${}^{13}{\rm CH}_{3}$) (Found M⁺, 161.0913. C ${}^{13}_{10}{\rm CH}_{12}{\rm O}$ requires M, 161.0922).

2-Trideuteriomethyl-[^{13}C]-tetralone **8c**- d_3

In the same way as 2-methylindanone **5a**, tetralone **1** (1.4 g, 9.8 mmol), LDA (6.5 ml, 1.5 M in THF, 9.8 mmol) and methyl-[¹³C]-iodide– d_3 (1.43 g, 0.61 ml, 9.8 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (19:1), 2-trideuteriomethyl-[¹³C]-tetralone **8c**- d_3 (0.91 g, 57%) as an oil; R_F [light petroleum (40–60°C):ether (9:1)] 0.5; v_{max} (film)/cm⁻¹ 2065 (CD) and 1685 (CO); δ_H (250 MHz, CDCl₃) 8.05 (1 H, d, ${}^{3}J_{H,H}$ =7.7, CH; Ar), 7.45 (1 H, t, ${}^{3}J_{H,H}$ =7.7, CH; Ar), 7.32 (1 H, d, ${}^{3}J_{H,H}$ =7.7, CH; Ar), 7.24 (1 H, d, ${}^{3}J_{H,H}$ =7.7, CH; Ar), 2.26-2.14 (1 H, m, CH_ACH_B) and 1.89 (1 H, m, CH_ACH_B); δ_C (67.5 MHz, CDCl₃) 200.7, 144.2, 133.1, 132.7, 128.7, 127.4, 126.6, 42.4 (1 C, doublet [1:1], ${}^{1}J_{C,C}$ =36.1, C^{13} CH₃), 31.3, 28.8 and 14.6 (1 C, septet [1:3:6:7:6:3:1], ${}^{1}J_{C,D}$ =19.4, CD₃) (Found MH⁺, 165.1212. C¹³₁₀CH₁₀D₃O requires M, 165.1217).

2-Trimethylsilyoxy-2-trideuteriomethyl-tetra-1-ene 9a

In the same way as the silvl enol ether **6a**, 2-trideuteriomethyl-[13 C]-tetralone **8a** (0.81 g, 5.5 mmol), LDA (4.75 ml, 1.5 M in THF, 11.0 mmol) and Me₃SiCl (1.31 g, 1.53 ml, 12.1 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether

Copyright © 2003 John Wiley & Sons, Ltd. J Label Compd Radiopharm 2003; 46: 515-530

(19:1), the *1-trimethylsilyoxy-2-trideuteriomethyl-tetra-1-ene* **9a** (0.77 g, 78%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.9; $v_{\rm max}$ (film)/cm⁻¹ 2090 (CD) and 1590 (C=C); $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.33-7.07 (4 H, m, 4 × CH; Ar), 2.74 (2 H, t, ${}^{3}J_{\rm H,\rm H}$ =8.4, CH₂), 2.26 (2 H, t, ${}^{3}J_{\rm H,\rm H}$ =8.4, CH₂) and 0.20 (9 H, s, Me₃Si); $\delta_{\rm C}$ (62.5 MHz, CDCl₃) 144.5, 135.9, 134.4, 128.8, 126.1, 125.5, 121.5, 116.8, 29.1, 28.3 and 0.62 (Found M⁺, 235.1480. C₁₄H₁₇D₃OSi requires M, 235.1472). The absence of the septet [1:3:6:7:6:3:1] around 15 ppm for the CD₃ substituent in 13 C NMR spectrum is common due to the long T₁ relaxation time associated with this substituent.¹⁶

2-Trimethylsilyoxy-2-methyl-[¹³C]-tetra-1-ene **9b**

In the same way as silvl enol ether **6a**, 2-methyl-[¹³C]-tetralone **8b** (0.21 g, 1.2 mmol), LDA (0.6 ml, 2 M in THF, 1.2 mmol) and Me₃SiCl (0.14 g, 0.16 ml, 1.32 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (19:1), the *1-trimethylsilyoxy-2-methyl-[*¹³C]-tetra-1-ene **9b** (0.26 g, 89%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C):ether (9:1)] 0.9; $v_{\rm max}$ (film)/cm⁻¹ 1588 (C=C); $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.34-7.17 (4 H, m, 4 × CH; Ar), 3.30-2.80 (2 H, m, CH₂), 2.35-2.00 (2 H, m, CH₂), 1.44 (3 H, d, ¹*J*_{C,H}=127.6, ¹³CH₃) and 0.8 (9 H, s, Me₃Si); $\delta_{\rm C}$ (62.5 MHz, CDCl₃) 143.3, 133.0, 132.9, 128.7, 127.3, 126.3, 122.1, 117.5, 28.7, 27.4 (¹³CH₃), 23.6 and 1.3 (Found M⁺, 233.1381. C₁₃¹³CH₂₀SiO requires M, 233.1386).

1-Trimethylsilyoxy-2-trideuteriomethyl- $[^{13}C]$ *-tetra-1-ene* **9c**- d_3

In the same way as the silyl enol ether **6a**, 2-trideuteriomethyl-[¹³C]tetralone **8c** (0.4 g, 2.43 mmol), LDA (1.6 ml, 1.5 M in THF, 2.43 mmol) and Me₃SiCl (0.29 g, 0.33 ml, 2.63 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (19:1), the *1-trimethylsilyoxy-2-trideuteriomethyl-[¹³C]-tetra-1-ene* **9c**-*d*₃ (0.51 g, 88%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C):ether (9:1)] 0.9; $v_{\rm max}$ (film)/cm⁻¹ 2065 (CD) and 1599 (C=C); $\delta_{\rm H}$ (270 MHz, CDCl₃) 7.50-7.25 (4 H, m, 4 × CH; Ar), 3.34-3.01 (2 H, m, CH₂), 2.46 (2 H, m, CH₂), 2.46-2.13 (2 H, m, CH₂) and 0.20 (9 H, s, Me₃Si); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 143.5, 133.2, 131.3, 128.5, 128.0, 126.4, 122.1, 117.5, 29.4, 26.3, 23.4 (1 C, septet [1:3:6:7:6:3:1], ${}^{1}J_{\rm C,D}$ =19.6, CD₃) and 2.2 (Found MH⁺, 237.1576. C₁₃¹³CH₁₈D₃OSi requires M, 237.1584).

2-Deuterio-2-trideuteriomethyltetralone 10a-d4

In the same way as 2-trideuteriomethylindanone **7a**-*d*₄, silyl enol ether **9a** (35 mg, 0.15 mmol), MeLi (93 µl, 1.6 M in ether, 0.15 mmol) and acetic acid–*d*₄ (19 mg, 17 µl, 0.3 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (19:1), 2*deuterio-2-trideuteriomethyltetralone* **10a**-*d*₄ (15 mg, 61%) as an oil; *R*_F [light petroleum (40–60°C):ether (9:1)] 0.5; v_{max} (film)/cm⁻¹ 2059 (CD) and 1680 (CO); $\delta_{\rm H}$ (250 MHz, CDCl₃) 8.04 (1 H, d, ${}^{3}J_{\rm H,\rm H}$ =7.6, CH; Ar), 7.45 (1 H, t, ${}^{3}J_{\rm H,\rm H}$ =7.6, CH; Ar), 7.31 (1 H, d, ${}^{3}J_{\rm H,\rm H}$ =7.6, CH; Ar), 7.23 (1 H, d, ${}^{3}J_{\rm H,\rm H}$ =7.6, CH; Ar), 3.02-2.96 (2 H, m, CH₂), 2.22-2.18 (1 H, m, CH_ACH_B) and 1.92-1.87 (1 H, m, CH_ACH_B); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 201.6, 144.9, 133.7, 133.1, 129.4, 128.5, 127.2, 42.6 (1 C, triplet [1:1:1], ${}^{1}J_{\rm C,\rm D}$ =19.5, CDCO), 32.1 and 30.4 (Found MH⁺, 165.1212. C₁₁H₉D₄O requires M, 165.1217). The negative isotopic shift was 0.5 ppm (75.4 Hz at 150.9 MHz).

2-Deuterio-2-methyl-[¹³C]-tetralone **10b**-d₁

In the same way as 2-trideuteriomethylindanone **7a**-*d*₄, silyl enol ether **9b** (0.1 g, 0.43 mmol), MeLi (0.27 ml, 1.6 M in diethyl ether, 0.43 mmol) and acetic acid–*d*₄ (55 mg, 49 µl, 0.86 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (19:1), 2-deuterio-2-methyl-[¹³C]-tetralone **10**-*d*₁ (50 mg, 72%) as an oil; *R*_F [light petroleum (40–60°C):ether (9:1)] 0.5; v_{max} (film)/cm⁻¹ 2103 (CD) and 1618 (CO); $\delta_{\rm H}$ (250 MHz, CDCl₃) 8.05 (1 H, d, ³*J*_{H,H}=7.6, CH; Ar), 7.47 (1 H, t, ³*J*_{H,H}=7.6, CH; Ar), 7.32 (1 H, d, ³*J*_{H,H}=7.6, CH; Ar), 7.22 (1 H, d, ³*J*_{H,H}=7.6, CH; Ar), 3.09-2.93 (2 H, m, CH₂), 2.25-2.15 (1 H, m, CH_ACH_B), 1.95-1.81 (1 H, m, CH_ACH_B) and 1.26 (3 H, d, ¹*J*_{C,H}=127.4, ¹³CH₃); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 202.9, 143.3, 133.0, 132.9, 128.7, 127.3, 126.5, 41.8 (1 C, m, CD¹³CH₃), 31.2, 28.7, and 15.6 (¹³CH₃) (Found MH⁺, 163.1060. C¹³₁₀CH₁₂DO requires M, 163.1063). The negative isotopic shift could not be determined due to the multiplicity of the ¹³C NMR signal at 41.8 ppm.

2-Deuterio-2-trideuteriomethyl-[^{13}C]-tetralone **10c**- d_4

In the same way as 2-trideuteriomethylindanone $7\mathbf{a}$ - d_4 , silyl enol ether **9c** (0.1 g, 0.42 mmol), MeLi (0.3 ml, 1.6 M in diethyl ether, 0.42 mmol) and acetic acid- d_4 (53 mg, 48 µl, 0.84 mmol) gave, after column

Copyright © 2003 John Wiley & Sons, Ltd.

chromatography on silica gel eluting with light petroleum ether–ether (19:1), 2-deuterio-2-trideuteriomethyl-[^{13}C]-tetralone **10c**-d₄ (57 mg, 82%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C):ether (9:1)] 0.5; $v_{\rm max}$ (film)/cm⁻¹ 2069 (CD) and 1685 (CO); $\delta_{\rm H}$ (250 MHz, CDCl₃) 8.04 (1 H, d, $^{3}J_{\rm H,H}$ = 7.6, CH; Ar), 7.45 (1 H, t, $^{3}J_{\rm H,H}$ = 7.6, CH; Ar), 7.31 (1 H, d, $^{3}J_{\rm H,H}$ = 7.6, CH; Ar), 7.25 (1 H, d, $^{3}J_{\rm H,H}$ = 7.6, CH; Ar), 3.04-2.93 (2 H, m, CH₂), 2.24-2.14 (1 H, m, CH_ACH_B) and 1.94-1.81 (1 H, m, CH_ACH_B); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 200.9, 144.2, 133.0, 132.4, 128.7, 127.4, 126.5, 42.5 (1 C, dt, $^{1}J_{\rm C,C}$ = 36.2 and $^{1}J_{\rm C,D}$ = 18.1), 31.2, 28.7 and 14.4 (1 C, septet [1:3:6:7:6:3:1], $^{1}J_{\rm C,D}$ = 11, 13 CD₃) (Found M⁺, 165.1180. Cl₁₀¹³CH₈D₄O requires M, 165.1173). The negative isotopic shift could not be determined due to the multiplicity of the ¹³C NMR signal at 42.5 ppm.

2-Trideuteriomethylbenzosuberone 12a-d₃

In the same way as 2-trideuteriomethylindanone 5a, benzosuberone 11 (0.6 g, 3.74 mmol), LDA (2.3 ml, 1.5 M in THF, 3.74 mmol) and methyl iodide- d_3 (0.54 g, 0.23 ml, 0.24 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether-ether (9:1), the 2trideuteriomethylbenzosuberone 12a- d_3 (0.36 g, 56%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.31; v_{max} (film)/cm⁻¹ 2069 (CD) and 1681 (CO); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.68 (1 H, d, ${}^{3}J_{\rm H,H} = 7.7$, CH; Ar), 7.38 (1 H, t, ${}^{3}J_{H,H}$ = 7.7, CH; Ar), 7.30-7.18 (2 H, m, 2 × CH; Ar), 3.10-2.87 (2 H, m, CH₂), 2.78 (1 H, t, ${}^{3}J_{H H} = 6.6$, CHMe), 2.15-2.02 (1 H, m, CH_AH_B), 1.95-1.86 (2 H, m, CH₂) and 1.77-1.56 (3 H, m, CH₂ and CH_ACH_B); δ_C (100.6 MHz, CDCl₃) 207.9, 141.8, 139.8, 131.3, 129.7, 128.5, 126.4, 44.0, 33.7, 31.8, and 25.5 (Found MH⁺, 178.1303. C₁₂H₁₂D₃O requires MH, 178.1311). The absence of the septet [1:3:6:7:6:3:1] around 15 ppm for the CD₃ substituent in the ${}^{13}C$ NMR spectrum is common due to the long T₁ relaxation time associated with this substituent.¹⁶

2-Methyl-[¹³C]-benzosuberone **12b**

In the same way as 2-trideuteriomethylindanone **5a**, benzosuberone **11** (0.36 g, 2.25 mmol), LDA (1.5 ml, 1.5 M in THF, 2.25 mmol) and methyl-[¹³C]-iodide (0.32 g, 0.14 ml, 2.25 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (9:1), 2-methyl-[¹³C]-benzosuberone **12b** (0.24 g, 61%) as an oil; $R_{\rm F}$

Copyright © 2003 John Wiley & Sons, Ltd.

[light petroleum (40–60°C): ether (9:1)] 0.31; v_{max} (film)/cm⁻¹ 1680 (CO); $\delta_{\rm H}$ (600 MHz, CDCl₃) 7.66 (1 H, d, ${}^{3}J_{\rm H,H} = 7.6$, CH; Ar), 7.36 $(1 \text{ H}, \text{ t}, {}^{3}J_{\text{H},\text{H}} = 7.6, \text{ CH}; \text{ Ar}), 7.28 (1 \text{ H}, \text{ m}, \text{ CH}; \text{ Ar}), 7.21 (1 \text{ H}, \text{ m}, \text{ CH};$ Ar), 3.04-2.91 (1 H, m, ¹³CH₃CH), 2.92-2.89 (2 H, m, CH₂), 2.09-2.04 (1 H, m, CH_AH_B), 1.94-1.88 (1 H, m, CH_ACH_B), 1.74-1.67 (1 H, m, CH_ACH_B , 1.63-1.56 (1 H, m, CH_ACH_B) and 1.24 (3 H, dd, ${}^{1}J_{CH}$ =127.5 and ${}^{3}J_{\rm H,H} = 6.7$, ${}^{13}CH_{3}$; $\delta_{\rm C}$ (150.9 MHz, CDCl₃) 207.7, 141.7, 139.6, 131.2, 129.7, 128.3, 126.2, 44.2 (1 C, doublet [1:1], ${}^{1}J_{C,C}=36.2$, C¹³CH₃), 33.6, 31.9, 25.5 and 16.4 (¹³CH₃) (Found MH⁺, 176.1162. C₁₁¹³CH₁₅O requires M, 176.1156).

1-Trimethylsilyoxy-2-trideuteriomethylbenzosuber-1-ene 13a-d3

In the same way as silvl enol ether 6a, 2-trideuteriomethylbenzosuberone 12a (0.4 g, 2.29 mmol), LDA (1.5 ml, 1.5 M in THF, 2.29 mmol) and Me₃SiCl (0.25 g, 0.29 ml, 2.29 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether-ether (9:1), 1trimethylsilyoxy-2-trideuteriomethyl benzosuber-1-ene $13a-d_3$ (0.43 g, 76%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.8; $v_{\rm max}$ (film)/cm⁻¹ 2111 (CD) and 1600 (C=C); $\delta_{\rm H}$ (270 MHz, CDCl₃) 7.52-7.25 (4 H, m, 4 × CH; Ar), 2.67 (2 H, t, ${}^{3}J_{H,H}$ = 7.1, CH₂), 2.21 (2 H, quintet, ${}^{3}J_{H,H} = 7.1$, CH₂), 1.95-1.91 (2 H, t, ${}^{3}J_{H,H} = 7.1$, CH₂) and 0.18 (9 H, s, Me₃Si); δ_C (100.6 MHz, CDCl₃) 141.9, 138.9, 138.7, 127.5, 126.8, 125.8, 124.6, 116.6, 32.6, 31.6, 28.7 and 0.52 (Found M⁺, 249.1439. C₁₅H₁₉D₃OSi requires M, 249.1442). The absence of the septet [1:3:6:7:6:3:1] around 15 ppm for the CD₃ substituent in the ${}^{13}C$ NMR spectrum is common due to the long T₁ relaxation time associated with this substituent.¹⁶

1-Trimethylsilyoxy-2-methyl-[¹³C]-benzosuber-1-ene **13b**

In the same way as silvl enol ether **6a**, 2-methyl-[¹³C]-benzosuberone 12b (0.23 g, 1.31 mmol), LDA (0.9 ml, 1.5 M in THF, 1.31 mmol) and Me₃SiCl (0.14 g, 0.2 ml, 1.31 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether-ether (9:1), the 1trimethylsilyoxy-2-methyl-[¹³C]-benzosuber-1-ene **13b** (0.26 g, 81%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.8; $v_{\rm max}$ (film)/cm⁻¹ 1598 (C=C); $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.38 (1 H, d, ${}^{3}J_{\rm H,H}$ =7.1, CH; Ar), 7.24-7.07 (3 H, m, 3 × CH; Ar), 2.57 (2 H, t, ${}^{3}J_{H,H}$ =7.0, CH₂), 2.12 (2 H, quintet, ${}^{3}J_{H H} = 7.0$, CH₂), 1.89 (3 H, d, ${}^{1}J_{C H} = 126.3$, ${}^{13}CH_{3}$),

Copyright © 2003 John Wiley & Sons, Ltd. J Label Compd Radiopharm 2003; 46: 515-530

1.85 (2 H, m, CH₂) and 0.80 (9 H, s, Me₃Si); δ_{C} (62.5 MHz, CDCl₃) 141.3, 140.1, 137.2, 130.6, 128.5, 126.9, 125.7, 116.7, 45.8, 33.7, 32.6, 29.8, 17.7, and 0.50 (Found M⁺, 247.1770. C₁₄¹³CH₂₂OSi requires M, 247.1773).

1-Deuterio-2-trideuteriomethylbenzosuberone 14a-d4

In the same way as 2-trideuteriomethylindanone $7a-d_4$, silvl enol ether 13a (0.1 g, 0.4 mmol), MeLi (0.25 ml, 1.6 M in ether, 0.4 mmol) and acetic acid- d_4 (51 mg, 45 µl, 0.8 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether-ether (9:1), the 2-deuterio-2-trideutereiomethylbenzosuberone **14a**- d_4 (52 mg, 73%) as an oil; $R_{\rm F}$ [light petroleum (40–60°C): ether (9:1)] 0.8; $v_{\rm max}$ (film)/cm⁻¹ 2140 (CD) and 1679 (CO); $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.67 (1 H, d, ${}^{3}J_{\rm H,H} = 7.6$, CH; Ar), 7.40-7.18 (3 H, m, 3 × CH; Ar), 3.06-2.87 (2 H, m, CH₂), 2.11-2.02 (1 H, m, CH_AH_B), 1.94-1.82 (1 H, m, CH_AH_B) and 1.73-1.54 (2 H, m, CH₂); δ_C(67.5 MHz, CDCl₃) 211.1, 139.5, 138.6, 132.3, 130.4, 129.3, 127.3, 41.7 (1 C, triplet [1:1:1], ${}^{1}J_{CD}$ = 19.5, CDCO), 36.2, 29.6 and 25.6 (Found MH⁺, 179.1185. C₁₂H₁₁D₄O requires M, 179.1189). The absence of the septet [1:3:6:7:6:3:1] around 15 ppm for the CD₃ substituent in the ¹³C NMR spectrum is common due to the long T_1 relaxation time associated with this substituent.¹⁶ The negative isotopic shift was 0.2 ppm (29.5 Hz at 150.9 MHz).

2-Deuterio-2-methyl- $[^{13}C]$ -benzosuberone **14b**- d_1

In the same way as 2-trideuteriomethylindanone **7a**- d_4 , silyl enol ether **13b** (0.14 g, 0.57 mmol), MeLi (0.36 ml, 1.6 M in ether, 0.57 mmol) and acetic acid- d_4 (73 mg, 65 µl, 1.14 mmol) gave, after column chromatography on silica gel eluting with light petroleum ether–ether (9:1) 2*deuterio-2-methyl-[*¹³C*]-benzosuberone* **14b**- d_1 (77 mg, 77%) as an oil; R_F [light petroleum (40–60°C): ether (9:1)] 0.8; v_{max} (film)/cm⁻¹ 2105 (CD) and 1679 (CO); δ_H (250 MHz, CDCl₃) 7.60 (1 H, d, ³ $J_{H,H}$ =7.6, CH; Ar), 7.42 (1 H, t, ³ $J_{H,H}$ =7.6, CH; Ar), 7.28-7.18 (2 H, m, 2 × CH; Ar), 3.05-2.87 (2 H, m, CH₂), 2.17-2.01 (1 H, m, C H_AH_B), 1.98-1.83 (1 H, m, C H_AH_B), 1.76-1.69 (2 H, m, CH₂) and 1.20 (3 H, d, ¹ $J_{C,H}$ =127.3, ¹³CH₃); δ_C (62.5 MHz, CDCl₃) 207.9, 137.6, 131.3, 129.8, 128.4, 126.4, 123.4, 43.9 (1 C, m, CD¹³CH₃), 33.7, 32.0, 25.6 and 16.5 (¹³CH₃) (Found M⁺, 176.1077. C¹³₁₁CH₁₃DO requires M,

176.1079). The negative isotopic shift could not be determined due to the multiplicity of the ¹³C NMR signal at 43.9 ppm.

Acknowledgements

We thank Queen Mary, University of London for a college studentship (to N.W.), the London University Central Research Fund, The Nuffield Foundation (NUF-NAF 99), The Royal Society and GOSS Scientific Instruments Ltd for their generous financial assistance.

References

- 1. IwataReuyl D, Basak A, Townsend CA. J Am Chem Soc 1999; 121: 11356.
- 2. D-incorporation see Kingsbury CA. J Org Chem 1968; 63: 3838; for ¹³C incorporation see Lee SF, Edgar M, Pak SC, Barth G, Djerassi C. J Am Chem Soc 1980; 102: 4784; for CD₃ incorporation see Kelly NM, Reid RG, Willis CL, Winton PL. Tetrahedron Lett 1996; 37: 1517.
- 3. Gerlach U, Haubenreich T, Hünig S, Keita Y. Chem Ber 1993; 126: 1205.
- 4. (a) Gerlach U, Hünig S. Angew Chem Int Ed Engl 1987; 26: 1283; (b) Soderquist A, Facelli JC, Horton WJ, Grant DM. J Am Chem Soc 1995; **117**: 8441.
- 5. Guthrie RD, Nicolas E.C. J Am Chem Soc 1981; 103: 4637.
- 6. Nemr AE, Tsuchiya T. Tetrahedron Lett 1998; 39: 3543 and references cited therein.
- 7. (a) Kenar JA, Nickon A. Tetrahedron 1997; 53: 14871; (b) Kamada T, Yamamoto O. Bull Chem Soc Jpn 1980; 53: 994.
- 8. Pfeffer PE, Silbert LS, Chrinko JM. J Org Chem 1972; 37: 451.
- 9. (a) Coumbarides GS, Eames J, Weerasooriya N. Tetrahedron Lett 2000; 41: 5753; (b) Eames J, Coumbarides GS, Weerasooriya N. Eur J Org Chem 2002; 181.
- 10. Laube T, Dunitz JD, Seebach D. Helv Chim Acta 1985; 68:1373.
- 11. (a) Stork G, Hudrlik P. J Am Chem Soc 1968; 90: 4462; (b) Stork G, Hudrlik PF. J Am Chem Soc 1968; 90: 4464.
- 12. (a) Wudl F, Aharon-Shalom E, Bertz SH. J Org Chem 1981; 46: 4612; (b) Takatsuto S, Gotoh C, Noguchi T, Nomura T, Fujioka S, Yokota T. J Chem Res (S) 1998; 206; (c) Johnson CE, Sannes KA, Brauman JL. J Phys Chem 1996; 100: 8827.

- 13. Stringer MB, Underwood DJ, Bowie J. Org Mass Spectrom 1992; 27: 270.
- 14. Junge H, Musso H, Zahorszky UI. Chem Ber 1968; 101: 793.
- 15. Baldwin JE, Barden TC, J Am Chem Soc 1984; 106: 5312.
- 16. Coumbarides GS, Eames J, Weerasooriya N. J Label Compd Radiopharm 2002; 45: 935.

Copyright © 2003 John Wiley & Sons, Ltd. J Label Compd Radiopharm 2003; 46: 515-530